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bstract

statistical analysis based on weakest link theory is employed to describe the brittle fracture induced at singularities in ceramic materials.
elationships are stated between the Weibull probability and the notch geometry. For low Weibull’s modulus, survival probabilities only depend
n the generalised stress intensity factor, whereas for high Weibull’s modulus, probabilities also depend on the notch tip radius. The effect of the
ip radius on the failure probabilities is equivalent to the exclusion of a small volume surrounding the notch tip. From these results, a numerical
ethodology based on the finite element analysis is proposed to state if singularity is harmful for a ceramic structure. Elsewhere, for a notch with
igh stress singularity order and symmetrically loaded, the Batdorf’s theory gives the same results than the Weibull one. In the case of a low stress
ingularity order, the prediction of failure can strongly depend on the multi-axial criterion.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

Solid oxide fuel cells (SOFC) are devices allowing the con-
ersion of chemical energy into electricity at high temperature.
his type of fuel cells is mainly constituted of three ceramic

ayers: two porous electrodes separated by a dense electrolyte
sually made of yttria-stabilised zirconia.1 Considered as a
eramic structure, the cell presents some geometrical and mate-
ial singularities where a high stress level can initiate a fracture.
eramics and especially porous ceramics behave as brittle mate-

ials and therefore exhibit a statistical distribution on their
trengths. This scattering is classically observed on brittle mate-
ials even in the case of notched specimen where the stress
s localised. Indeed, some studies have been focused on the
trength measurement of a series of identical ceramic single
dge notched beam (SENB) specimens. Above a critical notch
ip radius, the experimental toughness measurements exhibit sig-
ificant scattering.2–4 Therefore, a probabilistic approach has

o be considered to describe the fracture of a notched ceramic
nd more generally to predict the fracture of brittle materials
ubmitted to a singular stress field.

∗ Corresponding author. Tel.: +33 4 38782210; fax: +33 4 38784139.
E-mail address: laurencin@chartreuse.cea.fr (J. Laurencin).
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In this paper, it is assumed that the ceramic fracture initi-
ted in a singular volume remains controlled by flaws contained
ithin this zone. In this frame, the probability of fracture can be

valuated through the Weibull theory. However, this statistical
pproach requires an integration over the singular area that can-
ot be applied for high values of the Weibull’s modulus and high
tress singularity order.5–7 Another difficulty comes from the
ulti-axial stress state which can take place in the material and

equires the Batdorf approach to predict the brittle fracture.8–10

The aim of the paper is to establish a general methodology
n order to determine numerically the survival probability of a
eramic with a singular stress field. For such purpose, a physi-
al length scale is considered to overcome the Weibull integral
ivergence and the effect of stress triaxiality on failure predic-
ion is also taken into account. The case of SOFC materials has
een considered to illustrate the theoretical developments.

. General expression of survival probabilities

.1. Weibull approach: failure prediction in uni-axial

oading

The Weibull theory11,12 is based on two assumptions. The
rst one is the weakest link argument which assumes that the

mailto:laurencin@chartreuse.cea.fr
dx.doi.org/10.1016/j.jeurceramsoc.2007.06.003
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ropagation of any flaw in the material leads to the total frac-
ure of specimen. This assumption allows accounting for the
olume dependence of the ceramic average strength. The sec-
nd assumption concerns the shape of the distribution describing
he survival probability as a function of the applied stress. This
istribution function has been chosen to fit the brittle material
ehaviour with a good accuracy. Therefore, the Weibull the-
ry is based on a pure statistical treatment of the experimental
ata. The survival probability Ps of a specimen loaded with an
pplied tensile stress σ is then expressed from the two previous
ssumptions as follows:

s(σ, V ) = exp

(
−

∫
V

(
σ − σu

σ0

)m dV

V0

)
(1)

here V is the volume of the specimen. The characteristic
trength σ0 represents a scale parameter for the distribution
hereas the Weibull’s modulus m corresponds to a shape
arameter. The term V0 is the reference volume linked to the
haracteristic strength. The parameter σu corresponds to the
tress threshold below which the failure is impossible. This stress
evel usually tends to zero for ceramic components. The survival
robability can then be described through the Weibull stress σw
epresenting the stress integration over the volume:

Ps(σ, V ) = exp

(
−
(
σw

σ0

)m)

with σw = 1

V
1/m
0

{∫
V

σm dV

}1/m

(2)

It is worth noting that the Weibull’s modulus m is linked to the
aterial homogeneity. If m tends to infinity, the ceramic contains
homogeneous defect distribution. It means that the failure does
ot present a statistical behaviour: the material strength becomes
ndependent of the specimen volume. At the opposite side, if m
s low, the strength depends strongly on the stressed volume. In
his case, a small volume may withstand a high level of stress.

For a structure submitted to a multi-axial stress state, the
urvival probability can be expressed by the product of each
urvival probability in the three principal directions, providing
hat the three principal stresses σi act independently on fracture:

Ps(σ, V ) =
i=3∏
i=1

Ps(σi, V ) with

( ∫ (
σi

)m dV
)

⎡
⎢⎣
σrr

σrϕ

σrω

⎤
⎥⎦ = [R]

⎡
⎢⎣
σ1

σ2

σ3

⎤
⎥⎦ with [R] =

⎡
⎢⎣

sin2 ϕ

sin ϕ co

− sinω
s(σi, V ) = exp −
V σ0 V0

(3)

This assumption is obviously unsafe because the combina-
ion of the principal stresses on a local flaw randomly oriented
ig. 1. Relationship between the coordinates of the principal directions (x1 x2

3) and the local coordinates related to the crack plane (xr xϕ xω).

ill induce a shear and a normal stress which will affect the fail-
re. This limitation of the Weibull theory has been highlighted
xperimentally by many authors and reviewed by Lamon.8 The
tatistical prediction of failure under a multi-axial stress state
as been initially proposed by Batdorf and Crose13 and then
mproved by several authors into a more realistic approach.8–10

.2. Batdorf approach: failure prediction in a multi-axial
tress state

This approach considers that each natural flaw of the ceramic
an be modelled by a perfect crack. These defects are submitted
o a shear and normal stress due to the multi-axial loading. The
ocal stress state (i.e. the mixity) depends on the location and
rientation of the crack in relation to the three principal direc-
ions. According to the weakest link assumption, the failure will
e reached if only one crack in the structure is submitted to an
quivalent stress which exceeds a threshold value, value being
etermined using a crack propagation criterion. The main steps
o calculate the survival probability with the Batdorf approach
re the followings:

(a) Cracks are assumed to be randomly oriented in the material.
The stress tensor in the local coordinate system of the defect
(xr xϕ xω) can be given as a function of the three principal
stresses σ1, σ2 and σ3 (Fig. 1):

2 ω sin2 ϕ sin2 ω cos2 ϕ

os2 ω sin ϕ cosϕ sin2 ω − sin ϕ cosϕ

sin ϕ sin ϕ sinω cosω 0

⎤
⎥⎦ (4)

b) Assuming that the flaw geometry is represented by a penny-
shape crack with radii c, the stress intensity factors KI, KII
and KIII related to the three modes of loading are expressed
from the local stress field surrounding the crack (Fig. 2). In
the case of an infinite body, it has been demonstrated that14:

√ √

KI = 2

π
σ πc, KII = 4

π(2 − ν)
τ cosψ πc,

KIII = 4(1 − ν)

π(2 − ν)
τ sinψ

√
πc (5a)
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Fig. 2. Penny-shape crack loaded by a normal σ and shear τ stresses.

with

σrr = σ and
σrϕ = τ cosψ

σrω = τ sinψ

}
with

τ = (σ2
rϕ + σ2

rω)
1/2

(5b)

where the symbol ν denotes the Poisson’s ratio.
(c) The crack extension occurs when a combination of the

stress intensity factors typically expressed as g(KI, KII, KIII)
exceeds a critical value gc which only depends on the local
toughness KIC. This criterion allows defining an equivalent
stress σeq which depends on local stresses (σ, τ). The failure
is assumed to occur when σeq reaches a critical value related
to gc.

d) The equivalent stress σeq can then be introduced in the
strength distribution and integrated on the whole volume
and over all angular elements (for each flaw orientation).
The survival probability Ps is finally expressed as follows:

Ps = exp

{
−

∫
V

(
Kn

∫ ω=π

ω=0

∫ ϕ=π

ϕ=0
σmeq sin ϕ dϕ dω

)
dV

}
(6)

The coefficient Kn allows scaling the calculated probability
s. The term Kn is defined in such way that the probability is

educed to the classical Weibull expression when the specimen
s loaded under an homogeneous tensile stress σt:

n = 1

πσm0 V0Im
(7)

The term Im is an integral which depends on the Weibull’s
odulus. It is worth noting that the Batdorf theory takes into

ccount the effect of the principal stress interaction on the fail-
re probability. Furthermore, this theory is based on physical
onsiderations and requires the choice of a crack extension
riterion.15,16
A multi-axial stress state can appear in the singular fields
ven if the sharp notch is loaded in a pure opening mode. One
urpose of this paper is to estimate the influence of the singular
tress field triaxiality on failure probability by using a Batdorf

i
t
s
A
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pproach. Three classical criteria for crack extension will be
nvestigated. The Eqs. (8)–(10) describe the expressions of (a)
he equivalent stress σeq and (b) the integral Im related to each
riterion. In this work, they have been implemented in the finite
lement code Cast3M17:

(i) The first criterion is based on a crack extension in pure
mode I:

σeq = σ (8a)

and

Im =
∫ ϕ=π

ϕ=0
cos2m ϕ sin ϕ dϕ = 2

2m+ 1
(8b)

(ii) For the second criterion, the crack extension occurs when
the maximum energy release rate for coplanar crack prop-
agation exceeds the material toughness:

σeq =
{
σ2 + 4

(2 − ν)2 τ
2
}1/2

(9a)

and

Im =
∫ ϕ=π

ϕ=0
cosm ϕ

{
cos2 ϕ + 4

(2 − ν)2 sin2 ϕ

}m/2
sin ϕ dϕ (9b)

iii) For the last criterion, the crack extension is sensitive to
the maximum energy release rate for non-coplanar crack
propagation:

σeq =
[
σ4 +

(
2

2 − ν

)4

τ4 + 6

(
2

2 − ν

)2

σ2τ2

]1/4

(10a)

and

Im =
∫ ϕ=π

ϕ=0
cosm ϕ

{
cos4 ϕ + 16

(2 − ν)4 sin4 ϕ

+ 24

(2 − ν)2 sin2 ϕ cos2 ϕ

}m/4
sin ϕ dϕ (10b)

It is worth noting that the choice of the criterion depends on
he nature of the ceramic material. For example, Thiemeier et
l.15 have demonstrated that the maximum non-coplanar energy
elease rate criterion allows describing the aluminium nitride
racture behaviour; whereas Brückner-Foit et al.16 have shown
hat flaws in silicon nitride are only sensitive to an opening mode
f loading.

. Expression of survival probabilities in a singular
tress field

This section is dedicated to the prediction of failure initiated

n the singularity of a V notch. The statistical approach of frac-
ure is employed by considering the Weibull theory. First, the
urvival probability is calculated assuming a perfect V notch.
s limitation arises for high Weibull’s modulus m, the radius of
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the studied V notch has been considered ideal. In reality, there
is always a small radius at the notch tip which blunts the sharp
corner (Fig. 4). This radius comes from the machining or man-
ufacturing process and is related to the microstructure. The
Fig. 3. Scheme of a perfect V notch in a homogeneous medium.

he notch tip is then introduced in the mathematical analysis and
ts influence on the survival probabilities is investigated.

.1. Relationship between the Weibull modulus and the
ingularity order for a perfect V notch

Let us consider now the singular stress field created by a
erfect V notch (Fig. 3). In the case of a symmetric loading, the
lastic stress field is written in the vicinity of the notch tip as a
unction of the generalised stress intensity factor k1 related to
he opening mode. The displacements ui and the stress tensor
ij are given by the following equations18:

i = k1r
λ1gi(θ) (11a)

ij = k1r
−λ∗

1fij(θ) with λ∗
1 = 1 − λ1 (11b)

here (r,θ) is the coordinate system used for the analysis (see
ig. 3). The terms λ1 and λ∗

1 are related to the opening mode
nd correspond to the singularity orders, respectively, on dis-
lacements and stresses. The exponent λ∗

1 decreases from 1/2
or a perfect crack (i.e. for a notch opening angle 2α= 0) down
o 0 for a straight edge (2α=π). It has been shown that the sin-
ularity orders on displacements are solutions of an eigenvalue
roblem.18,19 For the symmetric field (mode I), the exponent λ1
s given by the lowest solution of the following equation:
in{λ1(2π − 2α)} + λ1 sin{2π − 2α} = 0 (12)

Typical values of λ1 and λ∗
1 are tabulated in Table 1 as a

unction of α.

able 1
alues of the singularity orders λ1 and λ∗

1

α (◦) Singularity order on displacement λ1

(calculated from Eq. (12))
Singularity order on
stress λ∗

1

90 0.5445 0.4555
120 0.6157 0.3843
140 0.6972 0.3028
150 0.7520 0.248
an Ceramic Society 28 (2008) 1–13

In order to investigate the effect of the singularity on the
ailure probability, the singular field (Eq. (11)) is introduced in
he expression of the Weibull stress (Eq. (2)). Only the hoop
tress σθθ that opens the notch has been considered for the sake
f simplicity:

w =
{
B

V0

∫ θ=+(π−α)

θ=−(π−α)

∫ r=Rk

r=0
km1 r

−λ∗
1mfmθθ (θ)r dr dθ

}1/m

(13)

here the integration bound Rk represents the radius of the sin-
ularity area and the term B denotes the out of plane specimen
hickness.

When integrating the previous equation, it appears that
eibull stress remains finite only if mλ∗

1 < 2. This condition
s fulfilled when the Weibull’s modulus is low enough so that
he ceramic strength depends strongly on the tested volume. In
his case, despite the high stress level caused by the perfect V
otch tip, the volume corresponding to the singular stress field
s sufficiently small to obtain a finite Weibull stress:

σw =
⎧⎨
⎩
(
B

V0

)⎛
⎝km1 R−λ∗

1m+2
k

−λ∗
1m+ 2

⎞
⎠∫ θ=+(π−α)

θ=−(π−α)
fmθθ (θ) dθ

⎫⎬
⎭

1/m

for mλ∗
1 < 2 (14)

If the previous conditionmλ∗
1 < 2 is not fulfilled, the Weibull

tress is not bounded and the survival probability should tend
o zero. In other words, if m is sufficiently high (volume-
ndependent strength), the local stress would always be sufficient
o induce the fracture in the singular area (whatever the level of
he applied load on the notch specimen). This case is obviously
nrealistic and not physically relevant.

Thus it is proposed here when mλ∗
1 ≥ 2 to modify the

nbounded expression of the Weibull stress by introducing a
ength scale parameter physically meaningful.7,20 Up to here,
Fig. 4. Scheme of a rounded V notch in a homogeneous medium.
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on the survival probability has been investigated. The probability
calculation has required a numerical integration. Fig. 6 shows the
results obtained for a crack (α= 0 and λ∗

1 = 0.5) with a blunted
tip.
J. Laurencin et al. / Journal of the E

tress field induced by such as rounded V notch approaches
losely the field of the corresponding ideal sharp V notch but
emains finite at the notch tip. Therefore, the introduction of a tip
adius should remove the Weibull stress singularity in the case of
λ∗

1 ≥ 2.
An alternative strategy consists in excluding a small vol-

me surrounding the ideal notch tip from the domain of stress
eld integration arguing that ceramic defects present a min-

mal size. In other words, the stressed volume used for the
tatistical calculations has to be large enough to contain critical
aws.

The effect of introducing a notch tip radius on the survival
robabilities will be first studied in the next section. Then, the
pproach which consists in excluding a small volume of material
ill be also evaluated. Finally, the consistencies between the two

trategies will be assessed.

.2. Influence of the notch tip radius on the survival
robability

Filippi et al.21 have established the analytical elastic stress
eld expressions in the neighbourhood of a notch with a small

ip radius ρ (Fig. 4). To obtain this more accurate solution, they
ave added a new exponent μ to the singularity order. In the
pening mode, the stress components are always linked to the
tress intensity factor k1:

θθ=k1r
λ1−1

{
fθθ(λ1, θ)+ q

4(q− 1)

(
r

r0

)μ1−λ1

gθθ(μ1, λ1, θ)

}
(15a)

rr=k1r
λ1−1

{
frr(λ1, θ)+ q

4(q− 1)

(
r

r0

)μ1−λ1

grr(μ1, λ1, θ)

}
(15b)

rθ=k1r
λ1−1

{
frθ(λ1, θ)+ q

4(q− 1)

(
r

r0

)μ1−λ1

grθ(μ1, λ1, θ)

}
(15c)

here q = (2π− 2α)/π and r0 = (ρ(q − 1))/q. The λ,μ, f(λ,θ) and
(μ,λ,θ) terms are given in Ref. 21. The definitions of r and θ
re given in Fig. 4 (with r > r0 for θ = 0). It is worth noting that
he radius perturbs the stress field only at the immediate vicinity
f the notch tip. Atzori et al.22 have demonstrated that this zone
preads over a distance of 0.4ρ from the tip. Outside this region,
he stress field matches the singular one. Fig. 5 illustrates this
emark. The analytical hoop stress calculated by Filippi et al.
Eq. (15a)) has been compared to the result of the finite element
nalysis performed in this work. The σθθ stress component has
een plotted in logarithmic coordinates as a function of the dis-
ance along x from the notch tip (point A in Fig. 4). At some

istance from the tip, the curve exhibits a linear evolution with
slope corresponding to the notch singularity order λ∗

1. This
inear portion defines the area where the field is dominated by
he singular solution described by (Eq. (11)).

F
f
t
σ

ig. 5. Hoop stress plotted along the notch bisector (θ = 0 ). Agreement between
he analytical solution from Filippi et al.21 and the simulated points from a
nite element analysis with: 2� = 90◦, λ1 = 0.5445, μ1 = 0.3449, ρ = 0.01 mm,

1 = 2.456 MPa m(1−λ1), ρ = 0.01 mm (present study).

The analytical stress field (Eq. (15)) has been used to calculate
he principal stresses close to the rounded V notch:

1,2 = σθθ + σrr

2
±

√
(σθθ − σrr)2 + σ2

rθ (16a)

3 = ν(σ1 + σ2) (plane strain) (16b)

Then, the three principal stresses have been introduced in the
eibull distribution (Eq. (3)) and the effect of the notch tip radius
ig. 6. Survival probability in the neighbourhood of a crack plotted as a
unction of the Weibull’s modulus m. Three notch tip radii have been inves-
igated: ρ = 0.01, 0.05 and 0.1 mm (2α= 0◦, λ1 = 0.5, k1 = 0.316 MPa

√
m,

0 = 12.5 MPa, V0 = 1 mm3).
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lnPs= −
[
k1

k′0(rc)

]m
with k′0(rc)=σ0

[
V0

BΛθ

]1/m

r
(mλ∗

1−2)/m
c

(18)
J. Laurencin et al. / Journal of the E

In the case of mλ∗
1 ≥ 2 (i.e. m ≥ 4 for a crack), the survival

robability is found to present non-zero values for the three stud-
ed notch tip radii (ρ = 0.01, 0.05 and 0.1 mm). As foreseen, this
esult indicates that the divergence on the Weibull stress has
een removed. The survival probability Ps varies with the notch
adius: Ps decreases strongly when ρ is decreased. Indeed, since
he Weibull modulus considered in this case is high, the proba-
ility calculation is mainly sensitive to the volume perturbed by
he notch tip. In other words, the risk of rupture is localised and
ontrolled by this perturbed volume. If the tip radius tends to
ero, Ps also tends to zero because the Weibull stress integration
ecomes unbounded (Ps → 0).

In the case of mλ∗
1 < 2 (i.e. m < 4 for a crack), the survival

robabilities are found to be almost independent of the notch
ip radius and its value is similar to that determined with the
xpression of the singular field (Eq. (11)). Indeed, in this case,
he Weibull stress is not affected by the small volume in the
icinity of the rounded notch tip. As a consequence, the risk of
upture spreads beyond this high stressed zone.

.3. Expression of the survival probability for mλ∗
1 ≥ 2

The aim of this section is to express in the case of mλ∗
1 ≥ 2

he survival probability as a function of:

the notch tip radius (case of a blunted notch).
the size of the excluded zone (case of an ideal sharp notch).

The equivalence between the two approaches has been also
stablished.

.3.1. Case of a blunted notch
As shown in the previous section, the Weibull probability

epends strongly on the notch tip radius. To determine the
nalytical relationship between Ps and ρ, the stress field estab-
ished close to the notch tip (Eq. (15)) has been introduced into
he Weibull distribution (Eq. (1)). The calculation detailed in
ppendix A leads to:

nPs= −
[
k1

k0(ρ)

]m
with k0(ρ)=σ0

[
V0

BΩθ

]1/m

ρ(mλ∗
1−2)/m

(17)

he dimensionless termΩ� depends on the Weibull’s modulus,
he notch opening angle α and the exponents λ1 and μ1. The
erm k0(ρ) can be interpreted as a characteristic toughness of
he notched specimens which leads to a survival probability of
.37 when the generalised stress intensity factor reaches this
alue k1 = k0. For m → ∞ (i.e. the strength is not probabilistic),
t can be highlighted that the toughness reduces to the form of
0(ρ) ∝ σ0ρ

λ∗
1 which is identical to a rupture stress criterion.

To verify the relationship between the notch tip radius and the
urvival probability, a finite element analysis has been performed
or a 90◦ notch opening angle. The simulations have been carried

ut for various tip radii ranging from 0.01 to 0.1 mm. The evolu-
ion of the survival probability with the notch radius obtained by
he finite element analysis is perfectly described by a law under
he form: lnPs ∝ ρ−mλ∗

1+2 (Fig. 7). This last result proves the

F
f
o

ig. 7. Logarithm of the normalised survival probability Ps/P
ρ=0.1 mm
s plotted

s a function of the notch tip radius. The simulated points have been fitted by
q. (17) (2α= 90◦, λ1 = 0.5445, m = 7).

ccuracy of the Eq. (17) which establishes the dependence of
he survival probability with the notch tip radius.

.3.2. Case of a sharp V notch with an excluded zone
The survival probability can also be determined by using the

xpression of the singular stress field of a sharp V notch and
emoving from the singular area a small region surrounding the
otch tip. If rc denotes the characteristic radius of this zone,
t will be defined in such way that the Weibull stress calculated
rom the singular field into the annular region rc < r < Rk is equiv-
lent to the one determined in the presence of a notch tip radius
Fig. 8).

The survival probability Ps calculated by using the singular
eld integrated into the area defined by rc < r < Rk is given by
see Appendix B):
ig. 8. Definition of the characteristic radius rc: the Weibull stress S2 calculated
rom the singular field into the annular region rc < r < Rk must be equal to the
ne determined in the presence of a notch tip radius S1.
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Fig. 10. Scheme of the simulated flexural test. Lengths are given in millime-
ters. Simulations are performed by blocking the outer bearings and applying an
imposed displacement to inner ones.

Table 2
Material characteristics: elastic coefficients and Weibull parameters

Young
modulus,
E (GPa)

Poisson’s
ratio, ν

Weibull’s
modulus, m

Characteristic
strength, σ0

(MPa)

Characteristic
volume, V0

(mm3)

1

t
t
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f
t
S
e
p
e
r
s
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is based on an elastic behaviour of the ceramic specimen. A
fine mesh at the tip of the sharp and blunted V notch has been
made to compute accurately the divergence of the stress field

Table 3
Values of the singularity exponent and mλ∗

1 product

2α (◦) λ∗
1 = 1 − λ1 mλ∗

1

ig. 9. Ratio of the notch tip radius ρ over the characteristic radius rc plotted
or a crack as a function of the Weibull’s modulus.

here Λθ depends on the notch opening α and the singularity
rder λ1. The relationship between the characteristic radius rc
nd the notch tip radius can be inferred from Eqs. (17) and (18):

ρ

rc
=

(
Ωθ(m,α, λ∗

1, μ1)

Λθ(m,α, λ∗
1)

)1/(mλ∗
1−2)

(19)

The last equation shows that there is a linear dependence
etween the characteristic radius rc and the notch tip radius ρ
ith a slope depending only on the Weibull’s modulus and notch
pening. The ratio ρ/rc has been plotted as a function of the
eibull modulus in the case of a crack (Fig. 9). The terms Ωθ

nd Λθ have been calculated in plane deformation by taking
nto account the three principal stresses. It can be noticed that
or materials having a Weibull’s modulus ranging from 5 to 7,
he ratio is about 10.

The equivalence between ρ and rc will be used into a numer-
cal methodology to state if a singularity is harmful (see Section
.1).

. Finite element analysis of survival probability
alculated at singularity

.1. Introduction: conditions of the simulations

In order to illustrate the results presented in the previous
ection, a finite element analysis has been carried out to study
he failure probability of a notched beam. The specimen has
een simulated in a four-point flexural test bench in such a way
hat the notch is submitted to an opening mode of loading. The
imensions of the specimen are specified in Fig. 10. The spac-
ng of the outer bearings is fixed to 40 mm whereas the spacing
f the inner ones is 20 mm.The material characteristics consid-
red for this study are given in Table 2. They are representative
f 8YSZ (8 mol% yttria stabilised zirconia) which is a classi-

al SOFC electrolyte material.23,24 Four notch opening angles
ith an ideal V shape (ρ = 0) have been simulated (2α= 90, 120,
40 and 150◦). The effect of the notch tip radius has also been
tudied. Three radii (ρ = 0.01, 0.05 and 0.1 mm) have been inves-
9023 0.30823 724 44624 102

igated on specimens for which the V notch geometry implies
hat the criterion mλ∗

1 ≥ 2 is verified (i.e. for 2α= 90 and 120◦
s calculated in Table 3).

To study the influence of the singular stress triaxiality on the
ailure probability, the Batdorf’s approach has been applied on
he notched specimens. The three classical criteria presented in
ection 2.2 have been investigated and implemented in the finite
lement code. It is reminded that the criteria considered in this
aper are based on (i) a mode I failure, (ii) the maximum coplanar
nergy release rate and (iii) the maximum non-coplanar energy
elease rate. In a first approach, it has been assumed that the
tress intensity factors established for an infinite body (Eq. (5))
emains relevant for defects close to the notch tip. Taking into
ccount stress triaxiality on the failure probability requires inte-
rating some trigonometric functions over all angular elements
Eqs. (8b), (9b) and (10b)). For the mode I criterion, this integral
xhibits an analytical solution. However, the two other criteria,
he integral Im has to be numerically computed. A special atten-
ion has been paid to choose a sufficiently small angular element
o integrate the trigonometric functions with accuracy.

The model used to perform the finite element simulations
90 0.4555 3.1885
120 0.3843 2.6901
140 0.3028 2.1196
150 0.248 1.736
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Fig. 11. Mesh of the flexural specimen. Arrangement of el

Fig. 11). Eight-node 2-D elements have been used to design the
esh and the computations have been performed considering

he plane strain assumption. The finite element code Cast3m17

as been employed for the analysis.

.2. Results

.2.1. Weibull probabilities for a sharp V notch
The V notch induces a stress singularity as it is observed in

ig. 12 where the logarithm of the hoop stress as been plot-
ed along the bisector (for 2α= 120◦). The linear part of the
urve defines the k-dominance radius Rk in which the fields
re governed by the singularity (Eq. (11)). It can be noticed
hat Rk is found to be equal to around 0.2 mm which corre-
ponds to one-tenth of the notch length. According to Eq. (11),
he slope of the curve plotted in Fig. 12 gives the singular-
ty order λ∗

1 which is estimated to be 0.3853. This last value

s in good agreement with the singularity exponent obtained
rom Eq. (12) (see Table 1). This result proves the accuracy
f the singular stress field determined by the finite element
nalysis.

ig. 12. The logarithm of theσθθ stress component has been plotted as a function
f the distance from the notch tip (along the bisector: θ = 0◦ and for the notch
pening: 2α= 120◦).

i
a
i
p

F
m
n

s at the notch tip (for an ideal V notch and a blunted one).

As discussed in Section 3.1, the Weibull stress diverges to
nfinity when the term mλ∗

1 is higher than 2. This result must
ead to a mesh dependence of the survival probability Ps cal-
ulated from the finite element stress solution. In the case of
90◦ notch opening, the survival probability has been plot-

ed as a function of the applied displacement for various mesh
ensities, i.e. for various sizes Rmin of the notch tip elements
Fig. 13). As foreseen, the survival probability predicted from
he finite element analysis decreases when the mesh size is
ecreased.

In Fig. 14, the survival probabilities have been divided by
chosen reference value Ps,max fixed to 0.42. For each notch

pening angle, the applied displacements have been adjusted
o obtain this Ps,max = 0.42 for the coarser mesh size. This nor-
alised probability Ps/(Ps,max = 0.42) has then been plotted as a

unction of Rmin for the investigated notch openings (Fig. 14). It
an be observed than whenmλ∗

1 is higher than 2, the probability

s mesh dependent. However, this dependence vanishes as soon
s the term mλ∗

1 becomes lower than 2. As expected, this result
llustrates the special role of the limiting value mλ∗

1 = 2 on the
robability fracture behaviour of a notched specimen.

ig. 13. Survival probability Ps plotted as a function of the applied displace-
ents. Ps has been obtained for different mesh sizes (Rmin is the radius of the

otch tip elements, m = 7).
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Fig. 16 shows a comparison between the survival probabili-
ties calculated from the Weibull (according to Eq. (3)) and the
Batdorf approach. For the 120◦ and 90◦ notch opening angle
ig. 14. Normalised survival probability plotted as a function of the radius of
he notch tip elements. The mesh size dependence on Ps has been investigated
or different notch opening angles.

.2.2. Weibull probabilities for a blunted V notch
In the case ofmλ∗

1 ≥ 2, the effect of a notch tip radius has been
nvestigated. For a 90◦ notch opening, the survival probabilities
btained respectively for a tip radius of ρ = 0.1 and 0.01 mm
ave been compared to those calculated from the sharp V notch
Fig. 15). To achieve a good match between the two curves, a
mall region surrounding the tip of the sharp V notch has been

emoved from the singular area. The characteristic radius of this
xcluded zone rc is found to be approximately 10 times smaller
han the notch tip radius. The extent of the region removed
emains much smaller than the k-dominance area. Indeed, Rk

ig. 15. Survival probability Ps plotted as a function of the applied displace-
ents (2α= 90◦). The probabilities have been calculated for (i) a rounded V

otch and (ii) a sharp V notch with a small region removed in the vicinity of the
ingularity: (a) notch tip radius ρ = 0.01 mm; (b) notch tip radius ρ = 0.1 mm.
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s equal to around 0.2 mm whereas the characteristic radius
c varies over a range from 10−3 to 10−4 mm. These results
oming from the finite element analysis are consistent with the
heoretical analysis presented in Section 3.3.

.2.3. Survival probability calculated with the Batdorf
ig. 16. Survival probability Ps plotted as a function the applied displacements
or three notch opening angles. Comparison between the probabilities calcu-
ated from the Weibull and Batdorf theories: (a) notch opening angle 2α= 90◦
ρ = 0.01 mm); (b) notch opening angle 2α= 120◦ (ρ = 0.01 mm); (c) notch open-
ng angle 2α= 150◦ (without notch tip radius).
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Fig. 16a and b), the survival probabilities are very close to
ach other. If the notch opening is increased to 150◦ (Fig. 16c),
strong discrepancy between the results arises. In this case,

he choice of local crack extension criterion affects strongly the
alculated survival probabilities.

. Discussion

.1. Effect of the singular stress field on ceramic failure

.1.1. Comparison of the failure prediction with
xperimental trends

It has been shown in Section 3 that the failure probability
f a notched structure is independent of the notch tip geometry
hen the condition mλ∗

1 < 2 is fulfilled. Practically, this cor-
esponds to low stress order exponent of singularities such as
otches with large opening angles (2α> 150◦ for SOFC materi-
ls). For these configurations, the statistical approach developed
or brittle materials applies, despite the singular stress field. The
ontribution to the Weibull stress of the zone around the notch
i.e. the singular area delimited by a distance Rk from the tip)
s bounded according to the Eq. (14). As a consequence, the
umerical calculation of the failure risk applied on the whole
tructure is not dependent of the singularity mesh size in a finite
lement analysis.

The extension of the Weibull analysis to lower opening
ngles (i.e. higher stress singularity orders) remains possi-
le for rounded-tip notches. It is found that the failure is
ompletely driven by the notch area and remains intrinsically
tatistical.

It is interesting to note that, for cracks (λ∗
1 = 0.5), the charac-

eristic toughness k0 derived in Section 3.3 increases according
o a law close to the square root of the tip radius. This result is
onsistent with the usual trend observed during the calibration
f the toughness measurement on SENB specimens. Indeed, it
as been widely reported that the toughness of ceramic materials
volves with the square root of the tip radius when this radius
xceed a critical value ρc.2,25 Moreover, for ρ > ρc, the material
oughness determined for a given notch tip radius exhibits a sta-
istical scattering. Thus, the Weibull approach seems to be well
dapted to describe the failure when the notch tip radius exceeds
he critical value ρc, typically of the order of 10 �m.25

.1.2. Relation with the classical criteria of fracture
echanics
In the particular case of a blunted shaped macroscopic crack

2α= 0◦ and ρ > 0) placed in a homogeneous material (m → ∞),
he Weibull analysis deduced from Eq. (17) predicts the rupture
o occur when the following condition is fulfilled:

∞ ≥ βσ0

[ρ
a

]0,5
(20)
here σ∞ is the load applied on the specimen, β a constant
epending on the geometry and a is the macroscopic crack
ength. This condition corresponds to a stress-based criterion
or failure.

p
t
s

an Ceramic Society 28 (2008) 1–13

Above the critical notch tip radius ρc, this stress criterion
s equivalent to the classical approach taking into account the
tress concentration factor at the tip of a rounded notch.26

On the contrary, for ρ < ρc, the toughness becomes indepen-
ent of ρ and is considered as the true material toughness by
xperimenters.2,25 In this case, the fracture mechanism is gov-
rned by the extension of the macroscopic crack and is better
escribed by the Griffith theory based on an energy criterion.27

he Weibull analysis fails to catch this behaviour for ρ < ρc
ecause it cannot describe the extension of the macroscopic
rack itself.

.1.3. Application to a brittle structure such as SOFC
The macroscopic crack extension mode is dominant in SOFC

eramic materials only for sharp cracks (with notch radius lower
han 10–20 �m). Other singularities result from the cell struc-
ure and are typically 90◦ shaped edges. The geometries of the
otch tips are expected to be rounded or blunted due to the cell
laboration process. In these conditions, the statistical approach
roposed in this work is well appropriate to evaluate the impact
f the singularities on the cell integrity.

In the frame of a finite element analysis, a methodology is
roposed to evaluate the singularities of the structure. For each
ingularity, the procedure is the following:

(i) The real notch is simply meshed considering an ideal shape
without describing the notch tip radius.

(ii) The finite element computation is performed and the stress
field is extracted, then integrated on each element to deter-
mine the failure probability.

iii) The failure probability is computed again after removing
from the domain of integration the first rings of elements
surrounding the tip and contained in the k-dominance zone.

Two cases can arise:

If the failure probability is not dependent on the excluded zone
surrounding the notch tip, it means that the singularity order
and the Weibull’s modulus are such that the probability is not
sensitive to the radius of the notch tip. Therefore, the calcu-
lated failure probability can be directly calculated on the mesh
of the whole ceramic component without excluding any vol-
ume surrounding the singularity. In this case, the singularity
is harmless.
If the failure probability is sensitive to the excluded zone, it
means that the ceramic fracture is dependent on the notch tip
radius. In this case, the failure probability has to be evaluated
by excluding a zone from the tip, the radius of this zone being
linked to the real notch tip radius (Eq. (19)). In this case, the
singularity is clearly harmful.

.2. Batdorf approach applied at singularity
Under a pure symmetrical mode of loading (mode I), the
robability calculated from the Batdorf theory has been shown
o reduce to the Weibull one when the notch angle is sufficiently
mall (below 2α= 120◦; Fig. 16). To explain this result, the
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Fig. 19. The survival probability Ps has been calculated over the singular area
(Rk = 0.2 mm) and plotted as a function the applied displacements (2α= 150◦).
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ig. 17. The survival probability Ps has been calculated over the singular area
Rk = 0.2 mm) and plotted as a function the applied displacements (2α= 90◦ and
= 0.01 mm).

eibull and Batdorf survival probabilities have been calculated
gain but considering only the cross section of the singular zone
i.e. the circular region surrounding the notch tip defined by the
adius Rk ∼ 0.2 mm).

Fig. 17 illustrates the results obtained at low notch opening
ngle (2α= 90◦). A comparison between the probabilities cal-
ulated on the singular area and the probabilities calculated on
he whole specimen are given on Fig. 18 for an applied dis-
lacement of 0.039 mm. It can be noticed that, for Weibull and
ach criterion of the Batdorf approach (i.e. mode I, coplanar
nd non-coplanar), the survival probabilities calculated on the
ingular area are close to the one calculated on the whole spec-
men. Therefore, for both approaches, the risk of rupture of the
hole structure is localised inside the singularity. In this region,

he principal stress σ1 perpendicular to the notch bisector is in
raction and is much higher than σ2. In this condition, the prob-
bilities calculated from the Batdorf approach will necessarily
atch with the Weibull ones.
At the notch opening angle 2α= 150◦, the Batdorf and
eibull approaches were found to lead to different predictions
Fig. 16c). Fig. 19 shows the survival probabilities calculated
n the singular area. The comparison with the probability com-
uted on the whole specimen is given on Fig. 20. It can be noticed

ig. 18. Comparison between the probabilities calculated on the whole speci-
en and on the singular area (applied displacement = 0.039 mm, 2α= 90◦ and
= 0.01 mm).
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ig. 20. Comparison between the probabilities calculated on the whole speci-
en and on the singular area (applied displacement = 0.096 mm, 2α= 90◦ and
= 0.01 mm).

hat the Weibull predictions computed on the singular area are
lose to the probabilities calculated on the whole specimen. Fur-
hermore, the probabilities determined from the Batdorf theory
nd calculated on the singular area reduced to the Weibull ones.
onsequently, for the three criteria of the Batdorf approach, the

egion in which the local risk of fracture is high spreads beyond
he k-dominance area; whereas, for the Weibull theory, the risk
f rupture remains localised inside the vicinity of the notch tip.
his result demonstrates that the differences which arise with

he Batdorf survival probabilities calculated on the whole spec-
men are caused by the contribution of probabilities calculated
n region beyond the singular area.

From this part, it can be concluded that, under a pure opening
ode of loading and for a low notch opening angles, the criteria

f the Batdorf theory give the same prediction than the Weibull
robability. Therefore, the Weibull theory can be directly applied
o calculate the risk of failure of blunted notched specimen sym-

etrically loaded. This conclusion remains valid as long as the
otch opening angle is sufficiently small. Otherwise, the Batdorf
pproach has to be considered.
. Conclusion

The limitations of the statistical approach to predict the fail-
re of brittle specimen containing ideal V notch have been
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ighlighted. To overcome these difficulties, the effect of the
otch tip radius ρ has been investigated. The explicit expres-
ions of stress field ahead a rounded notch have been introduced
n the Weibull analysis. It has been shown that for a low stress
ingularity order (λ∗

1 → 0 or 2α→ 180◦) and a low Weibull’s
odulus, the survival probabilities Ps only depend on the

eneralised stress intensity factor k1 (i.e. the remote applied
oading and the geometry of the structure). At the opposite,
or a high singularity order (λ∗

1 → 1/2 or 2α→ 0◦) and a high
eibull’s modulus, the survival probabilities depend not only

n the k1 parameter but also on the notch tip radius ρ. The
xplicit relationship between Ps and ρ has been established

nd found to be consistent with experimental trends. It has
een demonstrated that the effect of the notch tip radius on
he failure probabilities is equivalent to exclude a small area
urrounding the tip of the ideal V notch. From these previ-
us analyses, a numerical methodology based on the finite
lement method has been proposed to state the singular-
ty harmfulness of a structure and then compute its failure
robability.

The effect of the more realist Batdorf approach to predict
he failure probability of the singularities has been also stud-
ed. It has been shown that under a pure symmetrical mode
f loading (mode I) and a high singularity order (λ∗

1 → 1/2
r 2α→ 0◦), the classical criteria of defects extension imple-
ented in the Batdorf theory give the same results than the
eibull one. However, in the case of a low singularity order
λ∗

1 → 0 or 2α→ 180◦), it has been also shown that the
rediction of failure can strongly depend on the multi-axial
riteria.
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ppendix A. Relationship between the notch tip radius
nd the survival probability for mλ∗

1 > 2

For simplifications, only the hoop stress has been taken into
ccount in the following analysis:

θθ=k1r
λ1−1

{
fθθ(λ1, θ)+ q

4(q−1)

(
r

r0

)μ1−λ1

gθθ(μ1, λ1, θ)

}

J = B

∫ θ=+(π−α)

θ=−(π−α)

∫ r=Rk

r=r0
km1 f

m
θθ

⎧⎨
⎩
p=m∑
p=0

m!

p!(m−
(A1.1)

ith q = (2π− 2α)/π and r0 = (ρ(q − 1))/q. The previous stress
omponent is introduced in the Weibull distribution. The survival

l

an Ceramic Society 28 (2008) 1–13

robability calculation leads to a stress integral J defined as:

Ps = exp

(
− J

σ0
mV0

)
with

J = B

∫ θ=+(π−α)

θ=−(π−α)

∫ r=Rk

r=r0
km1 f

m
θθ (λ1, θ)

×
{
rλ1−1 + q

4(q− 1)

rμ1−1

rμ1−λ1
0

gθθ(μ1, λ1, θ)

fθθ(λ1, θ)

}m
r dr dθ

(A1.2)

here B denotes the specimen thickness. The function can be
eveloped before integration:

(
q

4(q− 1)

gθθ

fθθ

)m−p
rp(λ1−1)+(m−p)(μ1−1)+1

r(m−p)(μ1−λ1)
0

⎫⎬
⎭ dr dθ (A1.3)

If Rk � r0 and p(λ1 − 1) + (m − p) (μ1 − 1) + 2 < 0, the
ntegration of J gives the following expression (A1.4). It
an be noticed that the second condition is fulfilled when
(λ1 − 1) < −2 (whatever the value of p).

J = Bkm1 r
m(λ1−1)+2
0 Iθ with

Iθ =
∫ θ=+(π−α)

θ=−(π−α)
fmθθ

p=m∑
p=0

m!

p!(m− p)!

(
q

4(q− 1)

gθθ

fθθ

)m−p

× −1

p(λ1 − 1) + (m− p)(μ1 − 1) + 2
dθ (A1.4)

As r0 = (ρ(q − 1))/q, the probability can be finally expressed
s following:

s = exp

(
−Bk

m
1 ρ

m(λ1−1)+2Ωθ

σ0
mV0

)
(A1.5)

The termsΩθ depend on the Weibull’s modus, the notch open-
ng α and the stress exponents λ1 andμ1. It must be numerically
alculated:

Ωθ =
(
q− 1

q

)m(λ1−1)+2

Iθ,

Iθ =
∫ θ=+(π−α)

θ=−(π−α)
fmθθ

p=m∑
p=0

m!

p!(m− p)!

(
q

4(q− 1)

gθθ

fθθ

)m−p

× −1

p(λ1 − 1) + (m− p)(μ1 − 1) + 2
dθ (A1.6)

Only the stress hoop σθθ has been taken into account to
emonstrate the previous equation. However, it is important
o underline that this assumption does not change the relation
etween Ps and ρ. The account of the other stress components
nto the principal stress will only affect the expression of Ωθ .

The relation (A1.5) can be rewritten by using a characteristic
oughness k0 and the stress singularity order λ∗

1(= 1 − λ1):
nPs = −
[
k1

k0(ρ)

]m
with k0(ρ) = σ0

[
V0

BΩθ

]1/m

ρ(mλ∗
1−2)/m

(A1.7)
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It can be noticed that the relationship reduces to those estab-
ished for crack by O’Dowd (λ∗

1 = 0.5).7

ppendix B. Relationship between the characteristic
adius rc and the survival probability for mλ∗

1 > 2

To simplify the write, only the singular hoop stress has been
aken into account in the following analysis:

θθ = k1r
−λ∗

1fθθ(θ) (A2.1)

The survival probability is calculated onto an annular region
efined by rc < r < Rk:

s = exp

(
− J

σ0
mV0

)
with

J = B

∫ θ=+(π−α)

θ=−(π−α)

∫ r=Rk

r=rc
km1 r

−mλ∗
1fm(θ)r dr dθ (A2.2)

If rc is sufficiently small in comparison to Rk and mλ∗
1 > 2,

can be integrated:

= Bkm1 r
−mλ∗

1+2
c Λθ with Λθ=

∫ θ=+(π−α)

θ=−(π−α)

−fmθθ (θ)
−mλ∗

1 + 2
dθ

(A2.3)

The term Λθ depends on the Weibull modulus, the notch
pening α and the stress order λ∗

1. The survival probability can
e finally expressed as following:

s = exp

(
−Bk

m
1 r

−mλ∗
1+2

c Λθ

σ0
mV0

)
(A2.4)

This last expression has been obtained by considering the sin-
ular hoop stress component. For a more accurate solution, the
hree principal stresses must be introduced in the Weibull expres-
ion. However, it is important to underline that this correction
ill only affect the term Λθ(m,α,λ1

*).
The relation (A2.5) can be rewritten by using a characteristic

oughness k′0:

nPs= −
[
k1

k′0(rc)

]m
with k′0(rc)=σ0

[
V0

BΛθ

]1/m

r
(mλ∗

1−2)/m
c

(A2.5)
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