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Abstract

A statistical analysis based on weakest link theory is employed to describe the brittle fracture induced at singularities in ceramic materials.
Relationships are stated between the Weibull probability and the notch geometry. For low Weibull’s modulus, survival probabilities only depend
on the generalised stress intensity factor, whereas for high Weibull’s modulus, probabilities also depend on the notch tip radius. The effect of the
tip radius on the failure probabilities is equivalent to the exclusion of a small volume surrounding the notch tip. From these results, a numerical
methodology based on the finite element analysis is proposed to state if singularity is harmful for a ceramic structure. Elsewhere, for a notch with
high stress singularity order and symmetrically loaded, the Batdorf’s theory gives the same results than the Weibull one. In the case of a low stress

singularity order, the prediction of failure can strongly depend on the multi-axial criterion.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Solid oxide fuel cells (SOFC) are devices allowing the con-
version of chemical energy into electricity at high temperature.
This type of fuel cells is mainly constituted of three ceramic
layers: two porous electrodes separated by a dense electrolyte
usually made of yttria-stabilised zirconia.! Considered as a
ceramic structure, the cell presents some geometrical and mate-
rial singularities where a high stress level can initiate a fracture.
Ceramics and especially porous ceramics behave as brittle mate-
rials and therefore exhibit a statistical distribution on their
strengths. This scattering is classically observed on brittle mate-
rials even in the case of notched specimen where the stress
is localised. Indeed, some studies have been focused on the
strength measurement of a series of identical ceramic single
edge notched beam (SENB) specimens. Above a critical notch
tip radius, the experimental toughness measurements exhibit sig-
nificant scattering.>~* Therefore, a probabilistic approach has
to be considered to describe the fracture of a notched ceramic
and more generally to predict the fracture of brittle materials
submitted to a singular stress field.
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In this paper, it is assumed that the ceramic fracture initi-
ated in a singular volume remains controlled by flaws contained
within this zone. In this frame, the probability of fracture can be
evaluated through the Weibull theory. However, this statistical
approach requires an integration over the singular area that can-
not be applied for high values of the Weibull’s modulus and high
stress singularity order.>”’ Another difficulty comes from the
multi-axial stress state which can take place in the material and
requires the Batdorf approach to predict the brittle fracture.31°

The aim of the paper is to establish a general methodology
in order to determine numerically the survival probability of a
ceramic with a singular stress field. For such purpose, a physi-
cal length scale is considered to overcome the Weibull integral
divergence and the effect of stress triaxiality on failure predic-
tion is also taken into account. The case of SOFC materials has
been considered to illustrate the theoretical developments.

2. General expression of survival probabilities

2.1. Weibull approach: failure prediction in uni-axial
loading

The Weibull theory!!!2 is based on two assumptions. The
first one is the weakest link argument which assumes that the
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propagation of any flaw in the material leads to the total frac-
ture of specimen. This assumption allows accounting for the
volume dependence of the ceramic average strength. The sec-
ond assumption concerns the shape of the distribution describing
the survival probability as a function of the applied stress. This
distribution function has been chosen to fit the brittle material
behaviour with a good accuracy. Therefore, the Weibull the-
ory is based on a pure statistical treatment of the experimental
data. The survival probability P of a specimen loaded with an
applied tensile stress o is then expressed from the two previous
assumptions as follows:

oc—oy\"dV
Py(0, V) = exp (—/ < > ) (D
v 00 Vo

where V is the volume of the specimen. The characteristic
strength oo represents a scale parameter for the distribution
whereas the Weibull’s modulus m corresponds to a shape
parameter. The term Vj is the reference volume linked to the
characteristic strength. The parameter o, corresponds to the
stress threshold below which the failure is impossible. This stress
level usually tends to zero for ceramic components. The survival
probability can then be described through the Weibull stress oy,
representing the stress integration over the volume:
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It is worth noting that the Weibull’s modulus m is linked to the
material homogeneity. If m tends to infinity, the ceramic contains
ahomogeneous defect distribution. It means that the failure does
not present a statistical behaviour: the material strength becomes
independent of the specimen volume. At the opposite side, if m
is low, the strength depends strongly on the stressed volume. In
this case, a small volume may withstand a high level of stress.

For a structure submitted to a multi-axial stress state, the
survival probability can be expressed by the product of each
survival probability in the three principal directions, providing
that the three principal stresses o; act independently on fracture:
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Fig. 1. Relationship between the coordinates of the principal directions (x1 x2
x3) and the local coordinates related to the crack plane (x, xy X).

will induce a shear and a normal stress which will affect the fail-
ure. This limitation of the Weibull theory has been highlighted
experimentally by many authors and reviewed by Lamon.® The
statistical prediction of failure under a multi-axial stress state
has been initially proposed by Batdorf and Crose!? and then
improved by several authors into a more realistic approach.’-10

2.2. Batdorf approach: failure prediction in a multi-axial
stress state

This approach considers that each natural flaw of the ceramic
can be modelled by a perfect crack. These defects are submitted
to a shear and normal stress due to the multi-axial loading. The
local stress state (i.e. the mixity) depends on the location and
orientation of the crack in relation to the three principal direc-
tions. According to the weakest link assumption, the failure will
be reached if only one crack in the structure is submitted to an
equivalent stress which exceeds a threshold value, value being
determined using a crack propagation criterion. The main steps
to calculate the survival probability with the Batdorf approach
are the followings:

(a) Cracks are assumed to be randomly oriented in the material.
The stress tensor in the local coordinate system of the defect
(xr Xy X) can be given as a function of the three principal
stresses o1, 02 and o3 (Fig. 1):
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This assumption is obviously unsafe because the combina-
tion of the principal stresses on a local flaw randomly oriented

(b) Assuming that the flaw geometry is represented by a penny-
shape crack with radii c, the stress intensity factors Ky, K1
and Ky related to the three modes of loading are expressed
from the local stress field surrounding the crack (Fig. 2). In
the case of an infinite body, it has been demonstrated that'*:

2 4
K1 = —o+v/mc, Kigq=——-—1cosy/7c,
T

w2 —v)
Km = M‘L’ sin lﬂ«/g (5a)
(2 —v)
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Fig. 2. Penny-shape crack loaded by a normal ¢ and shear t stresses.
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where the symbol v denotes the Poisson’s ratio.

(c) The crack extension occurs when a combination of the
stress intensity factors typically expressed as g(K7, K11, K1)
exceeds a critical value g which only depends on the local
toughness Kjc. This criterion allows defining an equivalent
stress oeq Which depends on local stresses (o, 7). The failure
is assumed to occur when o¢q reaches a critical value related
to gc.

(d) The equivalent stress oeq can then be introduced in the
strength distribution and integrated on the whole volume
and over all angular elements (for each flaw orientation).
The survival probability P is finally expressed as follows:

=1 [e=T
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The coefficient K;, allows scaling the calculated probability
P. The term K, is defined in such way that the probability is
reduced to the classical Weibull expression when the specimen
is loaded under an homogeneous tensile stress o:
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The term [, is an integral which depends on the Weibull’s
modulus. It is worth noting that the Batdorf theory takes into
account the effect of the principal stress interaction on the fail-
ure probability. Furthermore, this theory is based on physical
considerations and requires the choice of a crack extension
criterion.!>-1

A multi-axial stress state can appear in the singular fields
even if the sharp notch is loaded in a pure opening mode. One
purpose of this paper is to estimate the influence of the singular
stress field triaxiality on failure probability by using a Batdorf

approach. Three classical criteria for crack extension will be
investigated. The Eqs. (8)—(10) describe the expressions of (a)
the equivalent stress oeq and (b) the integral I, related to each
criterion. In this work, they have been implemented in the finite
element code Cast3M'7:

(i) The first criterion is based on a crack extension in pure

mode I:
Oeq =0 (8a)
and
o= 2
I, = /W » cos” ¢ sin pdp = pre— (8b)

(i) For the second criterion, the crack extension occurs when
the maximum energy release rate for coplanar crack prop-
agation exceeds the material toughness:

4 172
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(iii) For the last criterion, the crack extension is sensitive to
the maximum energy release rate for non-coplanar crack
propagation:

4 2 1/4
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It is worth noting that the choice of the criterion depends on
the nature of the ceramic material. For example, Thiemeier et
al.! have demonstrated that the maximum non-coplanar energy
release rate criterion allows describing the aluminium nitride
fracture behaviour; whereas Briickner-Foit et al.!® have shown
that flaws in silicon nitride are only sensitive to an opening mode
of loading.

3. Expression of survival probabilities in a singular
stress field

This section is dedicated to the prediction of failure initiated
in the singularity of a V notch. The statistical approach of frac-
ture is employed by considering the Weibull theory. First, the
survival probability is calculated assuming a perfect V notch.
As limitation arises for high Weibull’s modulus m, the radius of
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Fig. 3. Scheme of a perfect V notch in a homogeneous medium.

the notch tip is then introduced in the mathematical analysis and
its influence on the survival probabilities is investigated.

3.1. Relationship between the Weibull modulus and the
singularity order for a perfect V notch

Let us consider now the singular stress field created by a
perfect V notch (Fig. 3). In the case of a symmetric loading, the
elastic stress field is written in the vicinity of the notch tip as a
function of the generalised stress intensity factor k; related to
the opening mode. The displacements u; and the stress tensor

o are given by the following equations'3:
ui = kir* gi(0) (11a)
oy = kir M f(0)  with AT =1— Ay (11b)

where (7,0) is the coordinate system used for the analysis (see
Fig. 3). The terms A and A} are related to the opening mode
and correspond to the singularity orders, respectively, on dis-
placements and stresses. The exponent A decreases from 1/2
for a perfect crack (i.e. for a notch opening angle 2« =0) down
to 0 for a straight edge (2o = ). It has been shown that the sin-
gularity orders on displacements are solutions of an eigenvalue
problem.'®!° For the symmetric field (mode I), the exponent A
is given by the lowest solution of the following equation:

sin{A1 (27 — 2a)} + A; sin{27 — 20} = 0 (12)

Typical values of A; and A} are tabulated in Table 1 as a
function of c.

Table 1
Values of the singularity orders A and A}

2a (°) Singularity order on displacement A; Singularity order on
(calculated from Eq. (12)) stress k’f
90 0.5445 0.4555
120 0.6157 0.3843
140 0.6972 0.3028
150 0.7520 0.248

In order to investigate the effect of the singularity on the
failure probability, the singular field (Eq. (11)) is introduced in
the expression of the Weibull stress (Eq. (2)). Only the hoop
stress ogg that opens the notch has been considered for the sake
of simplicity:

B O=+(r—a) pr=~Ry . 1/m
Ow = /9 / K r=2m £ @y dr do (13)
I

Vo Jo=——a) Jr=0

where the integration bound Ry, represents the radius of the sin-
gularity area and the term B denotes the out of plane specimen
thickness.

When integrating the previous equation, it appears that
Weibull stress remains finite only if mA} < 2. This condition
is fulfilled when the Weibull’s modulus is low enough so that
the ceramic strength depends strongly on the tested volume. In
this case, despite the high stress level caused by the perfect V
notch tip, the volume corresponding to the singular stress field
is sufficiently small to obtain a finite Weibull stress:

{2

for mA} <2 (14)

1/m
O=—+(r—a)
/ Sfip(0)do
f=—(1—0a)

—A¥m+2
m 1
kl Rk

—Afm +2

If the previous condition mk’f < 2isnot fulfilled, the Weibull
stress is not bounded and the survival probability should tend
to zero. In other words, if m is sufficiently high (volume-
independent strength), the local stress would always be sufficient
to induce the fracture in the singular area (whatever the level of
the applied load on the notch specimen). This case is obviously
unrealistic and not physically relevant.

Thus it is proposed here when mA} > 2 to modify the
unbounded expression of the Weibull stress by introducing a
length scale parameter physically meaningful.”-?* Up to here,
the studied V notch has been considered ideal. In reality, there
is always a small radius at the notch tip which blunts the sharp
corner (Fig. 4). This radius comes from the machining or man-
ufacturing process and is related to the microstructure. The

Fig. 4. Scheme of a rounded V notch in a homogeneous medium.
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stress field induced by such as rounded V notch approaches
closely the field of the corresponding ideal sharp V notch but
remains finite at the notch tip. Therefore, the introduction of a tip
radius should remove the Weibull stress singularity in the case of
mAf > 2.

An alternative strategy consists in excluding a small vol-
ume surrounding the ideal notch tip from the domain of stress
field integration arguing that ceramic defects present a min-
imal size. In other words, the stressed volume used for the
statistical calculations has to be large enough to contain critical
flaws.

The effect of introducing a notch tip radius on the survival
probabilities will be first studied in the next section. Then, the
approach which consists in excluding a small volume of material
will be also evaluated. Finally, the consistencies between the two
strategies will be assessed.

3.2. Influence of the notch tip radius on the survival
probability

Filippi et al.?! have established the analytical elastic stress
field expressions in the neighbourhood of a notch with a small
tip radius p (Fig. 4). To obtain this more accurate solution, they
have added a new exponent pu to the singularity order. In the
opening mode, the stress components are always linked to the
stress intensity factor kp:

Y
> _k )\_1—1 q L 1231 1
so=k1r Joo(A1, 9)+74(q D\ goo(1, A1, 6)

(15a)

H1—A]
a—1 49 r
or=kir frr()\1,9)+m % 8rr(t1, A1, 0)

(15b)

- q F O\ H1mA
org=k1r*!'” {fr@(ll,9)+4(q_1)<ro> gr@(,uls)»l»e)}
(15¢)

where g = (27 — 2a)/mw and ro = (p(qg — 1))/q. The A, w, f(r,0) and
g(u,1,0) terms are given in Ref. 21. The definitions of r and 6
are given in Fig. 4 (with r>rq for 6 =0). It is worth noting that
the radius perturbs the stress field only at the immediate vicinity
of the notch tip. Atzori et al.”> have demonstrated that this zone
spreads over a distance of 0.4 from the tip. Outside this region,
the stress field matches the singular one. Fig. 5 illustrates this
remark. The analytical hoop stress calculated by Filippi et al.
(Eq. (15a)) has been compared to the result of the finite element
analysis performed in this work. The ogg stress component has
been plotted in logarithmic coordinates as a function of the dis-
tance along x from the notch tip (point A in Fig. 4). At some
distance from the tip, the curve exhibits a linear evolution with
a slope corresponding to the notch singularity order A}. This
linear portion defines the area where the field is dominated by
the singular solution described by (Eq. (11)).

= 5

3 _ 200

--N-btch--o}jening: 2a=90° ...........
-~ Notch tip radius: p=Q.0§1 mm

(Gpg)o—g- (MPa)

(@) Simﬂlaté_d points from ﬁniie elemeﬁté L
analysis.! : : 1

- Aljal)friic:al solutfon (eqélf. 15a)

PiEiEH : i it
10" 10° 10? 10

Distance from the notch tip (mm)

Fig. 5. Hoop stress plotted along the notch bisector (6 =0°). Agreement between
the analytical solution from Filippi et al.?! and the simulated points from a
finite element analysis with: 200 =90°, A; =0.5445, | =0.3449, p=0.01 mm,
ki = 2.456 MPam!=*D_ p=0.01 mm (present study).

The analytical stress field (Eq. (15)) has been used to calculate
the principal stresses close to the rounded V notch:

Ogy + O,
0’1’2 = % + \/(099 — 0”)2 =+ O’rzg (163)
03 = v(o] + 02) (plane strain) (16b)

Then, the three principal stresses have been introduced in the
Weibull distribution (Eq. (3)) and the effect of the notch tip radius
on the survival probability has been investigated. The probability
calculation has required a numerical integration. Fig. 6 shows the
results obtained for a crack (@ =0 and A} = 0.5) with a blunted

tip.
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Fig. 6. Survival probability in the neighbourhood of a crack plotted as a
function of the Weibull’s modulus m. Three notch tip radii have been inves-
tigated: p=0.01, 0.05 and 0.1 mm (Qe=0°, A;=0.5, k1 = 0.316 MPa /m,
00 =12.5MPa, Vy=1mm?).
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In the case of m)»’f > 2 (i.e. m >4 for a crack), the survival
probability is found to present non-zero values for the three stud-
ied notch tip radii (p =0.01, 0.05 and 0.1 mm). As foreseen, this
result indicates that the divergence on the Weibull stress has
been removed. The survival probability Pg varies with the notch
radius: Py decreases strongly when p is decreased. Indeed, since
the Weibull modulus considered in this case is high, the proba-
bility calculation is mainly sensitive to the volume perturbed by
the notch tip. In other words, the risk of rupture is localised and
controlled by this perturbed volume. If the tip radius tends to
zero, P also tends to zero because the Weibull stress integration
becomes unbounded (Ps — 0).

In the case of mA] < 2 (i.e. m<4 for a crack), the survival
probabilities are found to be almost independent of the notch
tip radius and its value is similar to that determined with the
expression of the singular field (Eq. (11)). Indeed, in this case,
the Weibull stress is not affected by the small volume in the
vicinity of the rounded notch tip. As a consequence, the risk of
rupture spreads beyond this high stressed zone.

3.3. Expression of the survival probability for mA} > 2

The aim of this section is to express in the case of mA > 2
the survival probability as a function of:

- the notch tip radius (case of a blunted notch).
- the size of the excluded zone (case of an ideal sharp notch).

The equivalence between the two approaches has been also
established.

3.3.1. Case of a blunted notch

As shown in the previous section, the Weibull probability
depends strongly on the notch tip radius. To determine the
analytical relationship between P and p, the stress field estab-
lished close to the notch tip (Eq. (15)) has been introduced into
the Weibull distribution (Eq. (1)). The calculation detailed in
Appendix A leads to:

k n v, 1l1/m .
In Pi= — |: ! :| with  ko(p)=09 |:0:| p(m)nl—2)/m

ko(p) BS2y
(17)

The dimensionless term §2¢ depends on the Weibull’s modulus,
the notch opening angle « and the exponents A1 and . The
term ko(p) can be interpreted as a characteristic toughness of
the notched specimens which leads to a survival probability of
0.37 when the generalised stress intensity factor reaches this
value k| = ko. For m — oo (i.e. the strength is not probabilistic),
it can be highlighted that the toughness reduces to the form of
ko(p) o og p)‘T which is identical to a rupture stress criterion.
To verify the relationship between the notch tip radius and the
survival probability, a finite element analysis has been performed
for a 90° notch opening angle. The simulations have been carried
out for various tip radii ranging from 0.01 to 0.1 mm. The evolu-
tion of the survival probability with the notch radius obtained by
the finite element analysis is perfectly described by a law under
the form: In Ps o ,0*’")"1Ur2 (Fig. 7). This last result proves the
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Fig. 7. Logarithm of the normalised survival probability P/ P’ =01 mm plotted

as a function of the notch tip radius. The simulated points have been fitted by
Eq. (17) Qe=90°, 11 =0.5445, m=17).

accuracy of the Eq. (17) which establishes the dependence of
the survival probability with the notch tip radius.

3.3.2. Case of a sharp V notch with an excluded zone

The survival probability can also be determined by using the
expression of the singular stress field of a sharp V notch and
removing from the singular area a small region surrounding the
notch tip. If r. denotes the characteristic radius of this zone,
it will be defined in such way that the Weibull stress calculated
from the singular field into the annular region . < r < Ry is equiv-
alent to the one determined in the presence of a notch tip radius
(Fig. 8).

The survival probability P calculated by using the singular
field integrated into the area defined by r. <r< Ry is given by
(see Appendix B):

ke 1" Vo 1Y™ uar—2)/m
ith  ky(re)=00| —— !
k(’)(rc)] wi o(re) UOI:BAQ re
(18)

In Ps= — [

on

T Ry

Fig. 8. Definition of the characteristic radius r.: the Weibull stress S, calculated
from the singular field into the annular region r. <r <Ry must be equal to the
one determined in the presence of a notch tip radius Sj.
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20=0°

Ratio p/r,

5 5 10 15 20
Weibull modulus

Fig. 9. Ratio of the notch tip radius p over the characteristic radius r. plotted
for a crack as a function of the Weibull’s modulus.

where Ap depends on the notch opening « and the singularity
order A1. The relationship between the characteristic radius r,
and the notch tip radius can be inferred from Eqs. (17) and (18):

L (99(771,05,%*,#1))1/("”72)

- Ag(m, a, A7) (19)

rc

The last equation shows that there is a linear dependence
between the characteristic radius r. and the notch tip radius p
with a slope depending only on the Weibull’s modulus and notch
opening. The ratio p/r. has been plotted as a function of the
Weibull modulus in the case of a crack (Fig. 9). The terms £2¢
and Ap have been calculated in plane deformation by taking
into account the three principal stresses. It can be noticed that
for materials having a Weibull’s modulus ranging from 5 to 7,
the ratio is about 10.

The equivalence between p and r. will be used into a numer-
ical methodology to state if a singularity is harmful (see Section
5.1).

4. Finite element analysis of survival probability
calculated at singularity

4.1. Introduction: conditions of the simulations

In order to illustrate the results presented in the previous
section, a finite element analysis has been carried out to study
the failure probability of a notched beam. The specimen has
been simulated in a four-point flexural test bench in such a way
that the notch is submitted to an opening mode of loading. The
dimensions of the specimen are specified in Fig. 10. The spac-
ing of the outer bearings is fixed to 40 mm whereas the spacing
of the inner ones is 20 mm.The material characteristics consid-
ered for this study are given in Table 2. They are representative
of 8YSZ (8 mol% yttria stabilised zirconia) which is a classi-
cal SOFC electrolyte material.>3?* Four notch opening angles
with an ideal V shape (p = 0) have been simulated (2« =90, 120,
140 and 150°). The effect of the notch tip radius has also been
studied. Three radii (0 =0.01, 0.05 and 0.1 mm) have been inves-

| 50

%/ 20 J

Fig. 10. Scheme of the simulated flexural test. Lengths are given in millime-
ters. Simulations are performed by blocking the outer bearings and applying an
imposed displacement to inner ones.

Table 2

Material characteristics: elastic coefficients and Weibull parameters

Young Poisson’s Weibull’s Characteristic ~ Characteristic
modulus, ratio, v modulus, m strength, o volume, V)

E (GPa) (MPa) (mm?*)

19073 0.308% 7% 4462 102

tigated on specimens for which the V notch geometry implies
that the criterion m)C]" > 2 is verified (i.e. for 2a =90 and 120°
as calculated in Table 3).

To study the influence of the singular stress triaxiality on the
failure probability, the Batdorf’s approach has been applied on
the notched specimens. The three classical criteria presented in
Section 2.2 have been investigated and implemented in the finite
element code. It is reminded that the criteria considered in this
paper are based on (i) amode I failure, (ii) the maximum coplanar
energy release rate and (iii) the maximum non-coplanar energy
release rate. In a first approach, it has been assumed that the
stress intensity factors established for an infinite body (Eq. (5))
remains relevant for defects close to the notch tip. Taking into
account stress triaxiality on the failure probability requires inte-
grating some trigonometric functions over all angular elements
(Egs. (8b), (9b) and (10b)). For the mode I criterion, this integral
exhibits an analytical solution. However, the two other criteria,
the integral /,, has to be numerically computed. A special atten-
tion has been paid to choose a sufficiently small angular element
to integrate the trigonometric functions with accuracy.

The model used to perform the finite element simulations
is based on an elastic behaviour of the ceramic specimen. A
fine mesh at the tip of the sharp and blunted V notch has been
made to compute accurately the divergence of the stress field

Table 3

Values of the singularity exponent and m A} product

2a (°) M=1-1 may
90 0.4555 3.1885

120 0.3843 2.6901

140 0.3028 2.1196

150 0.248 1.736
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p=10

p>0

Fig. 11. Mesh of the flexural specimen. Arrangement of elements at the notch tip (for an ideal V notch and a blunted one).

(Fig. 11). Eight-node 2-D elements have been used to design the
mesh and the computations have been performed considering
the plane strain assumption. The finite element code Cast3m!’
has been employed for the analysis.

4.2. Results

4.2.1. Weibull probabilities for a sharp V notch

The V notch induces a stress singularity as it is observed in
Fig. 12 where the logarithm of the hoop stress as been plot-
ted along the bisector (for 2c=120°). The linear part of the
curve defines the k-dominance radius Rj in which the fields
are governed by the singularity (Eq. (11)). It can be noticed
that Ry is found to be equal to around 0.2 mm which corre-
sponds to one-tenth of the notch length. According to Eq. (11),
the slope of the curve plotted in Fig. 12 gives the singular-
ity order AT which is estimated to be 0.3853. This last value
is in good agreement with the singularity exponent obtained
from Eq. (12) (see Table 1). This result proves the accuracy
of the singular stress field determined by the finite element
analysis.

distance from the notch tip (mm)

4.54 10 3.35 10 248103 1.83 10 1.35 10 1.0 107
9
= | | | 1 |
= I I | 1 ' |
ol el meozmm] |
oy |
e S— ... PR — I . —
& I 1 I
= [ i i
£ Grpessss Rt ity | e -
1:: g _‘EEE“_‘*“_“{ pointz ﬁ‘ﬂi'_“‘_“]i"lcﬂ‘ analysis) __ .. 1_ e
E == ===~ Filled curve: Ingly = Lir+est : '
& 44-—-—-—=-- b s e o o AN [ .|
— B B 1
= Notch opening: 20:=120° :
31-  Singularity order: A, =0.3843 |~~~ —~ [ B
| I | 1
2 t t T t t 1
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In(distance from the notch tip) (In mm)

Fig. 12. The logarithm of the ogy stress component has been plotted as a function
of the distance from the notch tip (along the bisector: #=0° and for the notch
opening: 2« = 120°).

As discussed in Section 3.1, the Weibull stress diverges to
infinity when the term mA} is higher than 2. This result must
lead to a mesh dependence of the survival probability Py cal-
culated from the finite element stress solution. In the case of
a 90° notch opening, the survival probability has been plot-
ted as a function of the applied displacement for various mesh
densities, i.e. for various sizes Rpyin of the notch tip elements
(Fig. 13). As foreseen, the survival probability predicted from
the finite element analysis decreases when the mesh size is
decreased.

In Fig. 14, the survival probabilities have been divided by
a chosen reference value Pgmax fixed to 0.42. For each notch
opening angle, the applied displacements have been adjusted
to obtain this Pg max =0.42 for the coarser mesh size. This nor-
malised probability Ps/(Psmax = 0.42) has then been plotted as a
function of R, for the investigated notch openings (Fig. 14). It
can be observed than when mA7 is higher than 2, the probability
is mesh dependent. However, this dependence vanishes as soon
as the term mk’i‘ becomes lower than 2. As expected, this result
illustrates the special role of the limiting value mA} = 2 on the
probability fracture behaviour of a notched specimen.

(R S — T

_____ - R,,;,=3.70 10 mm _
084 oo P | R4 10%mm |
’ H - R,;,=4.63 105 mm
2 A TN T meR=520105mm |-
= I
R N B ittt - —&— R,,;,=6.17 10° mm -
< | _ 5
o | > R, i= 7.40 10 mm
g 054-———=——=——-- i e — .
|
TR E—— oo
E 0,3+- Notch opening: 20=90°
3
1)

0244 Singularity order: ﬁ:,= 0.4555 | _

0,1 4------------ et

Applied displacements (mm)

Fig. 13. Survival probability P plotted as a function of the applied displace-
ments. P has been obtained for different mesh sizes (R, is the radius of the
notch tip elements, m=7).
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Fig. 14. Normalised survival probability plotted as a function of the radius of
the notch tip elements. The mesh size dependence on P has been investigated
for different notch opening angles.

4.2.2. Weibull probabilities for a blunted V notch

In the case of m)ff > 2, the effect of anotch tip radius has been
investigated. For a 90° notch opening, the survival probabilities
obtained respectively for a tip radius of p=0.1 and 0.01 mm
have been compared to those calculated from the sharp V notch
(Fig. 15). To achieve a good match between the two curves, a
small region surrounding the tip of the sharp V notch has been
removed from the singular area. The characteristic radius of this
excluded zone r, is found to be approximately 10 times smaller
than the notch tip radius. The extent of the region removed
remains much smaller than the k-dominance area. Indeed, Ry

(a) 1 . : :
0.9 2o+ Caracteristic radius of the removed zone:
) r=9.6 10 mm
0.8 #— Radius of the notch tip: p =0.01 mm 1
g o7 : : ! ]
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} i } b
0 0,02 0,04 0,06 0,08 0,1 0,12
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Fig. 15. Survival probability P plotted as a function of the applied displace-
ments (2o=90°). The probabilities have been calculated for (i) a rounded V
notch and (ii) a sharp V notch with a small region removed in the vicinity of the
singularity: (a) notch tip radius p=0.01 mm; (b) notch tip radius p=0.1 mm.

is equal to around 0.2 mm whereas the characteristic radius
re varies over a range from 1073 to 10~ mm. These results
coming from the finite element analysis are consistent with the
theoretical analysis presented in Section 3.3.

4.2.3. Survival probability calculated with the Batdorf
approach

Fig. 16 shows a comparison between the survival probabili-
ties calculated from the Weibull (according to Eq. (3)) and the
Batdorf approach. For the 120° and 90° notch opening angle
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Fig. 16. Survival probability P plotted as a function the applied displacements
for three notch opening angles. Comparison between the probabilities calcu-
lated from the Weibull and Batdorf theories: (a) notch opening angle 2« =90°
(p=0.01 mm); (b) notch opening angle 2« = 120° (p =0.01 mm); (c) notch open-
ing angle 2« = 150° (without notch tip radius).
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(Fig. 16a and b), the survival probabilities are very close to
each other. If the notch opening is increased to 150° (Fig. 16c),
a strong discrepancy between the results arises. In this case,
the choice of local crack extension criterion affects strongly the
calculated survival probabilities.

5. Discussion
5.1. Effect of the singular stress field on ceramic failure

5.1.1. Comparison of the failure prediction with
experimental trends

It has been shown in Section 3 that the failure probability
of a notched structure is independent of the notch tip geometry
when the condition mA} < 2 is fulfilled. Practically, this cor-
responds to low stress order exponent of singularities such as
notches with large opening angles (2« > 150° for SOFC materi-
als). For these configurations, the statistical approach developed
for brittle materials applies, despite the singular stress field. The
contribution to the Weibull stress of the zone around the notch
(i.e. the singular area delimited by a distance Ry from the tip)
is bounded according to the Eq. (14). As a consequence, the
numerical calculation of the failure risk applied on the whole
structure is not dependent of the singularity mesh size in a finite
element analysis.

The extension of the Weibull analysis to lower opening
angles (i.e. higher stress singularity orders) remains possi-
ble for rounded-tip notches. It is found that the failure is
completely driven by the notch area and remains intrinsically
statistical.

It is interesting to note that, for cracks (AT = 0.5), the charac-
teristic toughness ko derived in Section 3.3 increases according
to a law close to the square root of the tip radius. This result is
consistent with the usual trend observed during the calibration
of the toughness measurement on SENB specimens. Indeed, it
has been widely reported that the toughness of ceramic materials
evolves with the square root of the tip radius when this radius
exceed a critical value p..22> Moreover, for p> pc, the material
toughness determined for a given notch tip radius exhibits a sta-
tistical scattering. Thus, the Weibull approach seems to be well
adapted to describe the failure when the notch tip radius exceeds
the critical value pe, typically of the order of 10 wm.?

5.1.2. Relation with the classical criteria of fracture
mechanics

In the particular case of a blunted shaped macroscopic crack
(2a=0° and p > 0) placed in a homogeneous material (m — 00),
the Weibull analysis deduced from Eq. (17) predicts the rupture
to occur when the following condition is fulfilled:

o = o[ 2] (20)

where o is the load applied on the specimen, § a constant
depending on the geometry and a is the macroscopic crack
length. This condition corresponds to a stress-based criterion
for failure.

Above the critical notch tip radius pc, this stress criterion
is equivalent to the classical approach taking into account the
stress concentration factor at the tip of a rounded notch.6

On the contrary, for p < p., the toughness becomes indepen-
dent of p and is considered as the true material toughness by
experimenters.>>> In this case, the fracture mechanism is gov-
erned by the extension of the macroscopic crack and is better
described by the Griffith theory based on an energy criterion.>’
The Weibull analysis fails to catch this behaviour for p< p.
because it cannot describe the extension of the macroscopic
crack itself.

5.1.3. Application to a brittle structure such as SOFC

The macroscopic crack extension mode is dominant in SOFC
ceramic materials only for sharp cracks (with notch radius lower
than 10-20 pwm). Other singularities result from the cell struc-
ture and are typically 90° shaped edges. The geometries of the
notch tips are expected to be rounded or blunted due to the cell
elaboration process. In these conditions, the statistical approach
proposed in this work is well appropriate to evaluate the impact
of the singularities on the cell integrity.

In the frame of a finite element analysis, a methodology is
proposed to evaluate the singularities of the structure. For each
singularity, the procedure is the following:

(i) The real notch is simply meshed considering an ideal shape
without describing the notch tip radius.

(i) The finite element computation is performed and the stress
field is extracted, then integrated on each element to deter-
mine the failure probability.

(iii) The failure probability is computed again after removing
from the domain of integration the first rings of elements
surrounding the tip and contained in the k-dominance zone.

Two cases can arise:

- If the failure probability is not dependent on the excluded zone
surrounding the notch tip, it means that the singularity order
and the Weibull’s modulus are such that the probability is not
sensitive to the radius of the notch tip. Therefore, the calcu-
lated failure probability can be directly calculated on the mesh
of the whole ceramic component without excluding any vol-
ume surrounding the singularity. In this case, the singularity
is harmless.

- If the failure probability is sensitive to the excluded zone, it
means that the ceramic fracture is dependent on the notch tip
radius. In this case, the failure probability has to be evaluated
by excluding a zone from the tip, the radius of this zone being
linked to the real notch tip radius (Eq. (19)). In this case, the
singularity is clearly harmful.

5.2. Batdorf approach applied at singularity

Under a pure symmetrical mode of loading (mode I), the
probability calculated from the Batdorf theory has been shown
to reduce to the Weibull one when the notch angle is sufficiently
small (below 2a=120°; Fig. 16). To explain this result, the
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Fig. 17. The survival probability Ps has been calculated over the singular area
(Rr=0.2 mm) and plotted as a function the applied displacements (2a =90° and
£=0.01 mm).

Weibull and Batdorf survival probabilities have been calculated
again but considering only the cross section of the singular zone
(i.e. the circular region surrounding the notch tip defined by the
radius Ry ~ 0.2 mm).

Fig. 17 illustrates the results obtained at low notch opening
angle (2a=90°). A comparison between the probabilities cal-
culated on the singular area and the probabilities calculated on
the whole specimen are given on Fig. 18 for an applied dis-
placement of 0.039 mm. It can be noticed that, for Weibull and
each criterion of the Batdorf approach (i.e. mode I, coplanar
and non-coplanar), the survival probabilities calculated on the
singular area are close to the one calculated on the whole spec-
imen. Therefore, for both approaches, the risk of rupture of the
whole structure is localised inside the singularity. In this region,
the principal stress o perpendicular to the notch bisector is in
traction and is much higher than 0. In this condition, the prob-
abilities calculated from the Batdorf approach will necessarily
match with the Weibull ones.

At the notch opening angle 2a=150°, the Batdorf and
Weibull approaches were found to lead to different predictions
(Fig. 16c). Fig. 19 shows the survival probabilities calculated
on the singular area. The comparison with the probability com-
puted on the whole specimen is given on Fig. 20. It can be noticed
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Fig. 18. Comparison between the probabilities calculated on the whole speci-
men and on the singular area (applied displacement=0.039 mm, 2« =90° and
»=0.01 mm).
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that the Weibull predictions computed on the singular area are
close to the probabilities calculated on the whole specimen. Fur-
thermore, the probabilities determined from the Batdorf theory
and calculated on the singular area reduced to the Weibull ones.
Consequently, for the three criteria of the Batdorf approach, the
region in which the local risk of fracture is high spreads beyond
the k-dominance area; whereas, for the Weibull theory, the risk
of rupture remains localised inside the vicinity of the notch tip.
This result demonstrates that the differences which arise with
the Batdorf survival probabilities calculated on the whole spec-
imen are caused by the contribution of probabilities calculated
on region beyond the singular area.

From this part, it can be concluded that, under a pure opening
mode of loading and for a low notch opening angles, the criteria
of the Batdorf theory give the same prediction than the Weibull
probability. Therefore, the Weibull theory can be directly applied
to calculate the risk of failure of blunted notched specimen sym-
metrically loaded. This conclusion remains valid as long as the
notch opening angle is sufficiently small. Otherwise, the Batdorf
approach has to be considered.

6. Conclusion

The limitations of the statistical approach to predict the fail-
ure of brittle specimen containing ideal V notch have been
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highlighted. To overcome these difficulties, the effect of the
notch tip radius p has been investigated. The explicit expres-
sions of stress field ahead a rounded notch have been introduced
in the Weibull analysis. It has been shown that for a low stress
singularity order (A} — 0 or 2o — 180°) and a low Weibull’s
modulus, the survival probabilities Ps only depend on the
generalised stress intensity factor k; (i.e. the remote applied
loading and the geometry of the structure). At the opposite,
for a high singularity order (A7 — 1/2 or 2 — 0°) and a high
Weibull’s modulus, the survival probabilities depend not only
on the k; parameter but also on the notch tip radius p. The
explicit relationship between Ps and p has been established

p=m
m!

probability calculation leads to a stress integral J defined as:
J .
P = exp _ao’” Vo with

O=+(r—a) pr=Rg
J=B/0 / KD f2 G0, 6)
I

=—(T—a) =ro

#1-1 AL 0"
x{r“‘1+ q T _ 8oo(1, A1, )} +dr do
g —Drg'™" fog(r1,0)

(A1.2)

where B denotes the specimen thickness. The function can be
developed before integration:

O=+(r—a) pr=Ry
AN T 2>
\

=—(T—0t) =0 p=0

and found to be consistent with experimental trends. It has
been demonstrated that the effect of the notch tip radius on
the failure probabilities is equivalent to exclude a small area
surrounding the tip of the ideal V notch. From these previ-
ous analyses, a numerical methodology based on the finite
element method has been proposed to state the singular-
ity harmfulness of a structure and then compute its failure
probability.

The effect of the more realist Batdorf approach to predict
the failure probability of the singularities has been also stud-
ied. It has been shown that under a pure symmetrical mode
of loading (mode I) and a high singularity order (A} — 1/2
or 2a — (0°), the classical criteria of defects extension imple-
mented in the Batdorf theory give the same results than the
Weibull one. However, in the case of a low singularity order
(A7 = 0 or 20— 180°), it has been also shown that the
prediction of failure can strongly depend on the multi-axial
criteria.
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Appendix A. Relationship between the notch tip radius
and the survival probability for mi] > 2

For simplifications, only the hoop stress has been taken into
account in the following analysis:

ok A1 q r H1—A
o=k1r fee(/\l,9)+4(q_l) . goo(1, A1, 0)
(A1.1)

with ¢ =27 — 2a)/m and rg =(p(g — 1))/g. The previous stress
component is introduced in the Weibull distribution. The survival

plm — p)!

drdo

Mm=p .p1—D+m—p)(pui—D+1
( q gee) (AL3)

4q—1) fuw rgn=Pi =31

If Rg>»rp and p(h1 —1D)+(m—p) (u1 —1)+2<0, the
integration of J gives the following expression (Al.4). It
can be noticed that the second condition is fulfilled when
m(A1 — 1) < —2 (whatever the value of p).

J = BE D2 with

Io = /0:-‘1-(71'—(1) fmpz:r:” m! ( q geg)m—p
bray i PMom = p)I\A(g = 1) fo

—1
“Pa— D+ m— pur — D +2

do (Al.4)

As ro=(p(q — 1))/q, the probability can be finally expressed
as following:

Bk™ m(Aq —1)+29
1P 9) (A1.5)

Py =exp| —
e (-

The terms £2y depend on the Weibull’s modus, the notch open-
ing o and the stress exponents A1 and p¢1. It must be numerically
calculated:

g—1\"M1=D+2
29 = () Iy,

q
O=+(r—0a) mlin m! q 200 m—p
Iy = / i ( )
be—r—a) 2o Plm = p)IAg — 1) foo
—1

X de (Al.6)
pi =D+ (m— p)(ur —1)+2

Only the stress hoop ogg has been taken into account to
demonstrate the previous equation. However, it is important
to underline that this assumption does not change the relation
between Pg and p. The account of the other stress components
into the principal stress will only affect the expression of £24.

The relation (A 1.5) can be rewritten by using a characteristic
toughness ko and the stress singularity order AT(= 1 — Aq):

k1
ko(p)

m v 1/m )
:| with  ko(p) = o9 |:0:| p(m}»l—Z)/m

In Py = —
B$2y

(A1.7)
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It can be noticed that the relationship reduces to those estab-
lished for crack by O’Dowd (A} = 0.5).

Appendix B. Relationship between the characteristic
radius r, and the survival probability for mi] > 2

To simplify the write, only the singular hoop stress has been
taken into account in the following analysis:

oop = k1r 1 fo(6)

The survival probability is calculated onto an annular region
defined by r. <r<Ry:

J
xp | — with
00" Vo

O=—+(T—0) r=Ry .
J=B8B /9 / K=" f™(@)r dr do
I

=—(T—0) =rc

(A2.1)

P =e
(A2.2)

If r is sufficiently small in comparison to Ry and mA] > 2,
J can be integrated:
O=+(r—a) _fongl )
—mA} +2
(A2.3)

)
T =B " Ay with  Ag= /
O=—(r—a)

The term Ap depends on the Weibull modulus, the notch
opening « and the stress order A}. The survival probability can
be finally expressed as following:

)
Bk "7 4,

Ps=exp | — o0 Vo

(A2.4)

This last expression has been obtained by considering the sin-
gular hoop stress component. For a more accurate solution, the
three principal stresses must be introduced in the Weibull expres-
sion. However, it is important to underline that this correction
will only affect the term Ag(m, o, 11 *).

The relation (A2.5) can be rewritten by using a characteristic
toughness k:

ki
k()(’"c)

m V. 1/m .
] with kf)(l’c)=00 {0} rimkl 2)/m

In Pg= — [
BAg

(A2.5)
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